
Name: NetID:

Prelim 1

CS2110, October 2, 2014, 5:30 PM

1 2 3 4 5 Extra Total
Question TrueFalse Multiple Object

Oriented
Recursion Lists Extra

Credit
Max 20 20 30 15 15 5 100
Score
Grader

The exam is closed book and closed notes. Do not begin until instructed.

You have 90 minutes. Good luck!

Write your name and Cornell netid at the top of EACH page! There are 5 questions
on 13 numbered pages, front and back. Check that you have all the pages. When you
hand in your exam, make sure your booklet is still stapled together. If not, please use
our stapler to reattach all your pages!

We have scrap paper available. If you do a lot of crossing out and rewriting, you might
want to write code on scrap paper first and then copy it to the exam, so that we can
make sense of what you handed in.

Write your answers in the space provided. Ambiguous answers will be considered incor-
rect. You should be able to fit your answers easily into the space provided.

In some places, we have abbreviated or condensed code to reduce the number of pages
that must be printed for the exam. In others, code has been obfuscated to make the
problem more difficult. This does not mean that its good style.

1 of 13

Name: NetID:

1. True / False (20 points)

a) T F A method in an interface must have no body.
b) T F double[] is a primitive type.
c) T F int[][] aa = new int[2][]; is valid syntax for constructing a ragged array.
d) T F You can append elements to an existing array.
e) T F In a doubly-linked list, a node can be removed in constant time if you have a

pointer to the node.
f) T F Evaluation of new LinkedList<Integer>() will call the constructor in the Object

partition of the object being created.
g) T F If A extends B and C extends B, then B b= new C(); A a= b; is illegal and

results in a compile-time error.
h) T F If A is an abstract class, a declaration A v; is illegal.
i) T F The private methods of a superclass can be called from a subclass.
j) T F A field of type Integer will have a value of 0 if the constructor does not assign it a

value.
k) T F Suppose abstract class A declares abstract method m() and non-abstract class B

extends A. Then if B does not declare m(), the java compiler will insert the
declaration m(){} in B.

l) T F The largest value in an unsorted array with n values can always be found in O(n)
steps.

m) T F Suppose class Dog contains static method m() and non-static field id. Then,
assigning a value to id will change the value of id in every instance of Dog.

n) T F A Java class can extend many different classes, but only if all but one of the
classes is abstract.

o) T F Even though Integer is a subtype of Object, int is not a subtype of Object.
p) T F Elements are removed from a stack in last-in-first-out order.
q) T F If variable a is declared to be of type A and class A does not define function

toString(), return "" + a; is illegal.
r) T F Executing e= null; causes the object pointed by e to be deleted from every place

it is referenced.
s) T F In the worst case, Quicksort will sort an array of size n in time proportional to

O(n log n).
t) T F If a method contains a loop that looks like this: while(i < n) {int v; ...},

then space is allocated for v whenever the loop body is executed and deallocated
when the loop body ends.

2 of 13

Name: NetID:

2. Multiple Choice (20 points)

In each part, circle all the correct answers.

(a) (3 points) The travelling salesman problem (TSP) asks this question: Given a list of cities
and the distances between each pair of cities, what is the shortest route that visits each city
exactly once and returns to the original city? The brute-force method (i.e. trying every
possible circuit) is O(n!) —for n cities, it takes time proportional to n factorial. On our
laptop, which executes 2 billion instructions per second, it took 2 years to find the solution
for a 19 city problem! If we add 1 more city, giving 20 cities, and run the program again
on our laptop, how long can we expect to wait for it to finish?

A. 2 years B. 20 years C. 40 years D. 2 ∗ 20! years

(b) (3 points) Which of the following statements about Collections classes is true?

A. An ArrayList has O(1) insertion and removal time except when the backing array is
being increased or decreased in size.

B. The elements of a HashSet are indexed from 0 to size() - 1, and element i can be
accessed via method get.

C. A LinkedList has O(n) removal time for an arbitrary value if you only have a reference
to the first and last node.

Questions (c) and (d) refer to the following class:

public class A {

public static double m(int x) {

int y = x;

try {

System.out.println("one");

y= 5/x;

System.out.println("two");

return 5/(x + 2);

} catch (RuntimeException e) {

System.out.println("three");

y= 5/(x+1);

System.out.println("four");

}

System.out.println("five");

y= 4/x

System.out.println("six");

return 1/x;

}

}

(c) (4 points) If m(x) is called for some x < 0, which of the following will definitely be printed?
A. “three” B. “four” C. “six” D. None of These

(d) (4 points) Which value of x will cause an exception to be thrown out of m.
A. -3 B. 0 C. 2 D. None of These

3 of 13

Name: NetID:

(e) (3 points) Which of the following operations take time proportional to n?

A. Look at all of the items in a list of n items

B. Access element number i of a linked list of length n

C. Access element number i of an array of length n

(f) (3 points) Which of the following uses of collection classes is correctly justified?

A. An ArrayList should be used to implement a queue because we can access any element
in constant time.

B. An ArrayList should be used to implement a stack because adding and removing an
element at the beginning can be done in constant time.

C. A HashSet should be used for implementing a queue that disallows the same item from
being on the queue twice because it doesn’t allow duplicate elements.

D. A LinkedList should be used to implement a stack because adding and removing an
element at the beginning of the list takes constant time

4 of 13

Name: NetID:

3. Object Oriented Design (30 points)

You and your friend are writing a game in Java with two types of characters: humans and
aliens. Your friend gives you the following classes, which you are now tasked with improving.

public class Game {

private List<Alien> aliens;

private List<Human> humans;

public void updateAll() {

for (Alien a : aliens) { update(a); }

for (Human h : humans) { update(h); }

}

public void update(Alien a) {

a.x += a.xSpeed;

a.y += a.ySpeed;

a.doStuff();

}

public void update(Human h) {

h.x += h.xSpeed;

h.y += h.ySpeed;

h.doStuff();

}

}

public class Human {

public int x;

public int y;

public int xSpeed;

public int ySpeed;

public void doStuff() {

System.out.println("doing human stuff");

}

}

public class Alien {

public int x;

public int y;

public int xSpeed;

public int ySpeed;

public void doStuff() {

System.out.println("doing alien stuff");

}

}

5 of 13

Name: NetID:

(a) 5 points Identify two design problems with these three classes from an object-oriented
perspective. Explain why these two are problems in at most 2 sentences per problem. Hint:
There are at least four or five problems of various natures, some dealing with syntax and access
modifiers and others dealing with what we discussed in the recitation on abstract classes.

6 of 13

Name: NetID:

(b) 15 points Rewrite the above program by improving the object-oriented design elements.
You should:

• Create a new abstract class GameCharacter.

• Rewrite classes Human and Alien to extend class GameCharacter.

• Rewrite class Game to take advantage of class GameCharacter.

7 of 13

Name: NetID:

(c) 10 points Suppose class Game has a list of GameCharacters. You want to sort this list so
that all Humans come before all Aliens by calling Collections.sort(listOfGameCharacters),
which sorts the list in ascending order. In order to do this, GameCharacter must implement
Comparable<GameCharacter>.
Implement function compareTo below according to its specification. Assume that Human and
Alien are the only subclasses of GameCharacter.

public abstract class GameCharacter implements Comparable<GameCharacter> {

/**

* Compare this object with obj. Return a negative integer, zero,

* or a positive integer depending on whether this object is less

* than, equal to, or greater than obj.

*

* Note: the comparison need ensure only that Human objects come

* before Alien objects.

*/

public int compareTo(GameCharacter obj) {

}

}

8 of 13

Name: NetID:

4. Recursion (15 Points)

(a) 5 points Recall the fibonacci numbers: fibonacci number an is defined as the sum of the
2 previous fibonacci numbers: an = an−1+an−2, with a0 = a1 = 1. Based on fibonacci numbers
we define the griesinacci numbers as the list of numbers where griesinacci number gn is defined
as the sum of the previous 3 griesinacci numbers if n is odd and the sum of the previous 2
griesinacci numbers if n is even. The first three griesinacci numbers g0, g1, and g2 are 1.

Implement recursive function griesinacci below according to its specification.

/** Return griesinacci number gn.

* Precondition n >= 0. */

public int griesinacci(int n) {

}

9 of 13

Name: NetID:

(b) 10 points Consider class ListNode below. ListNode is a Node of a singly-linked list.
The relevant fields are shown below:

/** A Node of a Singly-Linked List */

public class ListNode<E> {

E value; // The value stored in this ListNode

ListNode<E> next; // Next ListNode, null if this is the last node

}

Complete function reversePrint below according to its specification. Do not use an array
or any other data structure. Do not create new ListNodes. Do not use a loop. Use only
recursion.

/** Print the list, starting at node n, in reverse order.

* Each value should be on its own line. The list is NOT modified */

public static void reversePrint(ListNode<E> n) {

}

10 of 13

Name: NetID:

5. Loop Invariants (15 Points)

(a) 10 points Implement function findPartition below. Your algorithm must use a loop
that uses the invariant drawn below. For full credit, it must also run in O(log b.length) time.

< 0 unknown > 0

h k

b

0 b.length

/** Return the value k such that b[0..k-1] < 0 < b[k..]

* Precondition: b contains no zeroes and all the

* negative values come before all the positive ones

*/

public static int findPartition(int[] b) {

}

11 of 13

Name: NetID:

(b) 5 points You and your friend are tasked with writing a loop to sum the values of array
segment b[0..h]. Your loop (with initialization) must use the following invariant:

unknown s = sum of these elements

t

b

0 h

Your friend writes the following loop:

t= 0;

while(t < h) {

s= s + b[t];

t= t + 1;

}

Write down the four loopy questions and, for each, state whether it is correctly satisfied by
your friend’s loop.

12 of 13

Name: NetID:

6. Extra Credit (5 Points)

Write the body of the function findCommonList, whose specification and header appear below.
Like the recursion problem, ListNode<E> has two fields, E value and ListNode<E> next. Feel
free to add subfunctions.

Your solution must run in O(n), be completely functionally correct to receive
credit, and not use any additional data structures. You cannot use more than
constant (O(1)) space.

/** The singly linked list in the problem has two heads, n1 and n2, that merge

* at a common node. Return the first common node that is accessible from both

* n1 and n2. This must run in O(n) time.

*/

public static<E> ListNode<E> findCommonList(ListNode<E> n1, ListNode<E> n2) {

}

13 of 13

